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Abstract
Bacteriophages spreading on bacterial lawns can be used to study spatial range expansions –
a ubiquitous process in nature. In this project we explored the effect of stochasticity in lysis
time on the fitness of phages undergoing these range expansions. Previous work has modelled
different aspects of phage dispersal, but has not yet incorporated stochasticity in lysis time
into the models. We used agent-based stochastic simulations adapted from previous work on
phage dispersal to simulate range expansions on a one dimensional bacterial lawn. We showed
that a larger variance in lysis time increases the fitness of phages, possibly due to the presence
of individuals in the population with a lower average lysis time over their history. Our model
failed to predict the experimentally observed double ring morphology in bacterial density. This
project adds to the general understanding of the various mechanisms that play an important
role in spatial range expansions.



Contents

1 Introduction 2

2 Theory 4
2.1 Spatial range expansions . . . . 4
2.2 Stochasticity in lysis time . . . 5

3 Computational Model 6

4 Results 7
4.1 Competition . . . . . . . . . . . 7
4.2 Average lysis time over history . 8
4.3 Double ring morphology . . . . 9

5 Discussion 10
5.1 Competitive advantage of

stochasticity and distribution
shape in lysis time . . . . . . . 10
5.1.1 Gaussians . . . . . . . . 10
5.1.2 Different distribution

shapes . . . . . . . . . . 11
5.2 Analysis of average lysis time

over the history . . . . . . . . . 11
5.3 Double ring morphology . . . . 11
5.4 Further work . . . . . . . . . . 11

6 Conclusions 12

7 Acknowledgements 12

A Effect of larger variance on popu-
lation size in a toy model 13

B Bound for ⟨τ̄⟩ 14

1 Introduction

Bacteriophages (or phages) are viruses that
infect bacterial cells. Phages can typically
have either lytic or lysogenic life cycles [1],
and our focus is on phages with a lytic life
cycle. The key steps in the life cycle of a
phage undergoing a lytic cycle are the follow-
ing: infecting the bacterium (host), replicat-
ing its genome using the cellular machinery of
the host, and breaking open the host cell to
release multiple copies of itself (lysis). These

processes define the main life-history param-
eters of the phage: adsorption rate α, i.e. the
number of successful viral entries into the host
per unit of time; lysis time τ , i.e. the time
between adsorption and lysis; and burst size
β, i.e. the number of phages released when
the cell breaks open. It is common for nat-
urally occurring microbes to live in spatially
structured habitats: for example biofilms, or
colonies of cyanobacteria in marine environ-
ments [2]. Introducing spatial structure of
the host population into the system changes
the dynamics of phage dispersal significantly.
Now in order to reach new susceptible hosts,
phages have to diffuse outward from the initial
inoculation site. That process is called a spa-
tial range expansion, and it is an example of
a process which occurs everywhere in nature:
from invasive plant or insect pest expansions
to new territories [3]–[5], range expansions of
species due to climate change [6], to even hu-
man migration out of Africa [7]. This inter-
action can be studied in the lab using bacte-
rial lawns – two-dimensional bacterial cultures
that are macroscopically homogeneous – onto
which droplets of phage are inoculated. These
droplets give rise to plaques, i.e. visible clear-
ings of dead bacteria on a lawn [8], see Figure
1. Plaque formation is not only restricted to
phages, as animal and plant viruses similarly
form lesions on cell cultures [9]. Therefore,
what we find when studying bacterial plaques
can generalise to other types of viruses as well.

The spread of phages on a bacterial lawn
can be modelled using reaction-diffusion equa-
tions (see Section 2), which admit travel-
ling wave solutions [10]. An interesting fea-
ture of these travelling waves is that chance
plays a large role in the evolutionary change
of the spreading populations [11]: individu-
als at the very tip of a spreading population
have a large advantage in terms of being rep-
resented within the founding population in
the newly spread-to environment [12]–[14]. In
other words, the probability of a phage under-
going a range expansion to have descendants
close to the wavefront after some time is much
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larger if the current phage is close to the tip
of the wave. Stochastic reaction-diffusion sys-
tems have been used to study the effect of
randomness in selecting which alleles end up
in the new population [11]. In this project,
we explore how the wave dynamics are modi-
fied when stochasticity in lysis time is incorpo-
rated into the model, using similar stochastic
agent-based simulations (see Section 3) which
have previously been used to study range ex-
pansions for example in [15]–[17], and which
are based on the ‘stepping stone’ model [18].

A larger plaque size after a fixed amount
of time is indicative of a phage which spreads
faster. We expect there to exists an optimal
adsorption rate for plaque growth, because if
it was too high, then phages would be spend-
ing too much time inside bacteria, hindering
diffusion outwards significantly. Also, keeping
other parameters equal, we expect a shorter
lysis time to give rise to larger plaques [8],
[19]. However, it is also known that lysis
time and burst size are positively correlated:
a longer lysis time results in linearly more new
phages produced at lysis[20], [21]. Taking that
into account, lysis time will also have an opti-
mal value which is dependent on host density,
and going below the optimal value would re-
duce phage fitness [20]–[22] due to the smaller
number of offspring produced. By collecting
phages from the outer edge of a plaque, using
them to inoculate new host colonies, and re-
peating this process, we can select for faster
spreading phages. If we then measure the life
history parameters of the evolved phage pop-
ulation, compare them to the initial popula-
tion, and find a difference in some of the pa-
rameters, we could infer that there was se-
lective pressure acting on those parameters.
Fusco et al (unpublished results, manuscript
in preparation) ran this evolution experiment
and found that, while the plaque size went
up, the population averages of none of the
main life history parameters (α, β and τ) had
changed significantly, implying that they were
already ‘optimal’ in the original population.
We then hypothesise that it is instead the

degree of stochasticity (i.e. the variance) in
lysis time that was under selective pressure.
There are a couple of reasons to expect lysis
time stochasticity to play an important role.
Firstly, since the optimal lysis time for phages
depends on host density and quality [23], [24],
it might be good for a phage population to in-
clude individuals of varying lysis times, in or-
der to guarantee survival during fluctuations
in environmental conditions [25]. Secondly,
there is evidence that for λ phage, the mech-
anism by which the lysis time is controlled
is the accumulation of holin proteins up to a
threshold within host cell inner membranes,
and also that this process allows for stochas-
ticity [24], [26]. On the other hand, Hunter et
al’s [27] brief exploration of the effect of lysis
time stochasticity on the probability of fixa-
tion of neutral mutants in well-mixed popu-
lations showed no significant change to their
systems’s behaviour. This was, however, due
to the specific turbidostat (phages were con-
stantly provided with new hosts) setup of the
experiment. In that case, even average lysis
time has no effect on the probability of fixa-
tion of neutral mutants. Therefore, because
selective pressures depend on the experimen-
tal setup, we need to investigate the effect of
stochasticity in lysis time explicitly in spatial
range expansions, if that’s what we are inter-
ested in. The results from a turbidostat ex-
periment have no obvious implications on the
answers to our problem.

In the evolution experiment described
above, another interesting observation was
made: the bacterial density within the plaques
of faster spreading phages exhibited a double
ring morphology, see Figures 2, 3. The current
models cannot explain that.

In this project we focus on answering the
following questions: 1) Should we theoreti-
cally expect stochasticity in lysis time to in-
crease the fitness of bacteriophage? 2) Do we
see an increase in fitness in the simulations?
3) What is a plausible mechanism for why
(not)? 4) Can this model predict the double
ring morphology seen in the evolution experi-
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ment?

Figure 1: Diagram of plaque formation, from
[1].

Figure 2: A picture of the double ring struc-
ture of bacteria within a plaque.

Figure 3: Schematic depiction of bacterial
density in the plaque, based on the image from
the experiment.

2 Theory

2.1 Spatial range expansions

Consider three populations: the viral popula-
tion, V , the uninfected bacterial population,
B, and the infected bacterial population, I. A
model for the interactions between these pop-
ulations is described by:

V +B
α−→ I

τ−→ βV

where α is the adsorption rate of phage into
host cells, τ is the lysis time of an infected cell,
and β is the burst size. Following [16] and [10],
we can write down a set of reaction-diffusion

equations which describe plaque growth in 1D
for a phage population with a deterministic
lysis time:

∂B

∂t
= −αV B (1)

∂I

∂t
= αV B − αVt−τBt−τ (2)

∂V

∂t
=

∂

∂x

(
D
∂V

∂x

)
−αV B+βαVt−τBt−τ (3)

The subscript t − τ is used to represent that
the corresponding value should be evaluated
a time τ ago, thereby capturing the time lag
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between infection and lysis. For example, in
the second equation, the rate of change in the
number of infected bacteria is due to unin-
fected bacteria becoming infected at the cur-
rent time (from equation 1), and due to the
bacteria which became infected time τ ago
now lysing. Equation 3 captures the diffusion
of phages with diffusion constant D (which
we take to be constant, although it has been
shown to depend on host cell density [16]),
their adsorption into host cells and emergence
due to a lysis event.

These PDE-s admit travelling wave solu-
tions with an asymptotically constant velocity
[10], [28]–[31]. In a deterministic model, the
speed of the travelling wave is approximately
given by

√
D/τ [10], [29].

2.2 Stochasticity in lysis time

In order to model the effect of incorporating
stochasticity into the lysis time, we start by
thinking about a toy model: consider a sys-
tem with a single virus at time t0. Now, let
us draw a random variable T1 from a normal
distribution N (µ, σ2)a. After time T1 the vi-
ral population will be multiplied by β, i.e. T1

would act as a lysis time if the virus was to
immediately infect a host. We keep repeat-
ing this process, drawing Ti from the same
fixed distribution. We can now consider the
expected number of viruses at time t. This
will depend on the variance of the distribu-
tion, σ2, and a larger σ will result in a larger
expected population size at time t, see Ap-
pendix A for a demonstration via numerical
simulations. This toy model differs from a
real population of viruses in many important
ways, and especially because in a viral pop-
ulation, each individual draws its own lysis
time, and so the replication events are asyn-
chronous: a virus with τ = 400 will replicate
earlier than one with τ = 500. However, the
model captures an important idea: if there
are individuals in a population who happen

to replicate in a shorter amount of time than
the average, then the expected size of the pop-
ulation is larger. In the case of a turbidostat
experiment in which newly produced phages
are immediately provided with new uninfected
host bacteria, we would thus expect to see the
fraction of phage variants with a higher σ be
larger than of those with a lower variance in
their distribution of lysis times. (This is not
what Hunter et al [27] were measuring, so this
does not contradict their results.)

It is also expected that a similar argument
works in the case of a spatial expansion. In-
tuitively, in a travelling wave of phages, if one
phage happens to have a short lysis time, its β
descendants from the lysis event will emerge
from their host before the wave has moved
very far. Thus, they will have a larger chance
of ending up near the front, which is a good
predictor of still being at the front of the ex-
pansion some time later. That also means
that those phages will have the opportunity
to come across new hosts before they are all
killed, and therefore themselves replicate. We
propose that if the average lysis time τ̄ of a
lineage of phages (see Figure 4) was tracked
over time during a spatial expansion, then the
probability mass distribution of τ̄ -s, f(τ̄), of
the entire phage population would be shifted
towards a mean which is smaller than µ, the
mean of the underlying probability distribu-
tion, p(τ). Naively, one would expect the cen-
tral limit to apply, and thus the probability
distribution of τ̄ to have the same mean as
p(τ), but this is not the case, because we are
not taking the average of independent lysis
time events. Once a phage draws a smaller
τ , it will replicate sooner than other phages,
therefore the proportion of lineages with that
phage is larger than before see, Figure 4. Ad-
ditionally, we would expect ⟨τ̄⟩ to approach
an asymptote (as opposed to going to zerob),
which would be lower for phages with higher
σ. Using a relatively simple argument, see Ap-

aTechnically, it would be a truncated normal distribution, because we restrict T1 to be positive, but in cases
relevant to us, ⟨τ⟩ would be large enough that the probability mass below 0 would be small regardless.

bOr the minimum cutoff value of the truncated Gaussian.
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pendix B, we can calculate a lower bound for
the asymptotic value. Meanwhile, p(τ) would
remain unchanged, and new infection events
would still take as much time as initially to
reach lysis. Therefore, if we now considered a
population with different phage variants with
different σ-s, then by picking phages from the
front of the wave and using them to start new
plaques, we could be selecting for phages with
higher σ, while keeping µ constant.

Figure 4: A schematic diagram of a tree rep-
resenting a viral population. The edge lengths
represent lysis time lengths. Each path from
the root node to a leaf represents a lineage.
A single shorter lysis time on the rightmost
branch of the tree means that the proportion
of red phages goes from 1/3 to 3/2 for a while.

3 Computational Model

A description of the agent-based stochastic simulation used.

We use agent-based stochastic simulations
to investigate the effects of lysis time stochas-
ticity. The code used in this project was
largely based on the work of N. Krishnan in
[16], where they used the following model to
study range expansions of bacteriophage on a
bacterial lawn. The system consists of a one
dimensional lattice of colonisation sites, called
demes. Each deme has a fixed capacity, Kbac

of either uninfected, infected or dead cells, and
is initialised to have Kbac uninfected bacteria.
At each timestep, the following is carried out
(see Figure 5 for an overview and a summary
of the parameters): 1) each phage will dif-
fuse with a probability m/2 to a neighbouring
deme; 2) each phage will infect an uninfected
host cell with probability αc; 3) the infected
hosts who were infected at time t− τ undergo
lysis and release β new phages into the deme.
The simulation has a shifting frame that keeps
track of the travelling wave, introduces new
demes full of uninfected bacteria to the front
of the wave, and removes demes where the

phage population has reached a steady state
from behind the wave front. We adopt the
following set of assumptions:

1. The bacterial hosts are motionless.

2. The bacterial hosts do not replicate.

3. Phages cannot adsorb to already in-
fected hosts (superinfection exclusion).

4. Adsorption to uninfected hosts always
results in an infection.

5. Within a simulation, α and β are fixed
to a single value.

6. Instead of a fixed τ , the phage popula-
tion has an associated probability distri-
bution p(τ) from which each lysis time
is drawn.

7. τ only takes integer values. Whenever τ̄
is calculated from a sequence of τ -s, it
is also rounded to the nearest integerd.

We will later relax assumption 2 in the dou-
ble ring morphology experiment. See Section

cBy this we mean that the number of adsorbing phage is sampled from a binomial distribution with success
probability α and BiVi number of trials.

dThis is an arbitrary approximation made so that we could compare values of ⟨τ̄⟩ between phages.
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5 for a discussion on the validity and accuracy
of assumptions 3, 5. The probability distri-
bution p(τ) is usually taken to be a normal
distribution, with σ ∼ τ/10, as in [27], [32].

Figure 5: Diagram of the spatial range expan-
sion simulation setup from [16].

We ran experiments of roughly three
types:

1. Competition of one phage variant ver-

sus another with a different p(τ). A
travelling wave is first established, and
then all the free and adsorbed phages
are randomly labelled either 1 or 2, and
their parameters set accordingly. After
that, the simulation will keep running
for a while, and the “winner” is deter-
mined by seeing which variant remains
once heterozygosity has gone to 0.

2. Tracking the history of lysis times in
a population of a single phage variant.
Once a phage “falls out” from the mov-
ing frame, its τ̄ is recorded. We explore
how the distribution f(τ̄) evolves over
time.

3. Introducing bacterial replication to see
if a double ring morphology can be
produced. Additionally, a requirement
that bacteria can replicate only if an-
other cell has recently lysed in the same
deme is introduced.

4 Results

4.1 Competition

We tested whether phages with a higher vari-
ance in lysis time outcompete ones with a
lower variance. The lysis time distribution of
phage 1 is set to N (500, 50), and the distri-
bution parameters of phage 2 are varied. The
results are presented in Figure 6A. Phage 1
will almost certainly outcompete phage 2 if
σ1 ≥ 1.2σ2 if µ1 = µ2.

Figure 6: Probability of phage 1 outcompet-
ing phage 2 as a function of σ1/σ2 if phage
1 has a Gaussian p(τ) and phage 2 has 1) a
Gaussian distribution (A); 2) a gamma distri-
bution 3) a uniform distribution; 4) a skewed
gamma distribution for p(τ) (B). All the dis-
tributions have the same mean µ = 500.
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Figure 7: Velocities of spreading phages for
different values of σ for phages with a Gaus-
sian p(τ). Due to the truncation of p(τ) at
τ = 100, higher values of σ result in higher
µ, so the velocities above τ = 200 will start
decreasing.

Figure 8: Different probability density func-
tions for the distributions used in the compe-
tition experiment.

In addition, we measured the velocities of
the waves for phages with Gaussian p(τ)-s
with different σ-s, for a separate measure of
the fitness. The results are in Figure 7.

We also explored whether the shape of the
distribution p(τ), given that the mean and
variance stay fixed, plays a role in the com-
petitive advantage of one phage vs another.
The results are in Figure 6B for a competition
run between a phage with τ ∼ N (500, 50) and
phages with a 1) uniform, 2) gamma, and 3)
skewed gamma distributions (see Figure 8).

4.2 Average lysis time over his-
tory

We tracked the average lysis time τ̄ for each
phage in a population with τ ∼ N (µ, σ2)
for two different values of σ. The results for
f(τ̄), the probability mass function of τ̄ , after
80,000 timesteps are shown in figure 9. We see
that both f(τ̄)-s are shifted towards a smaller
mean and variance. Additionally, the distri-
bution with a larger variance has undergone
a larger shift. By tracking how f(τ̄) changes
over time as the simulation progresses, we can
observe whether ⟨τ̄⟩ tends towards an asymp-
totic value, and also estimate what that value
is. First, we note that the average τ̄ over all
phages within each deme only inside the co-
moving frame is initiallye lower than the mean
of f(τ̄) of the total phage population. We also
see that the frame average of τ̄ approached an
asymptote, which is similar to the asymptotic
population average τ̄ , although the popula-
tion average takes longer to reach that value.
The frame average τ̄ < 500 demonstrates that
picking phages from the edge of a plaque re-
sults in picking phages which have on average
lysed their hosts faster than µ even in the case
of a population of (genetically but not pheno-
typically) identical phages. The data for the
the average τ̄ within the moving frame, and
in the entire population are depicted in Fig-
ure 11. The results for the asymptotes are
collected in Table 1.

σ theoretical
bound

⟨τ̄⟩ of entire
population

⟨τ̄⟩ of
frame

100 200 433.2 425.8
50 350 483.8 482.2

Table 1: The bounds for asymptotic values for
⟨τ̄⟩, and the values from the best fit lines.

eBy initially we mean that after some time which is sufficiently long enough to establish meaningful data for
average lysis times, but not long enough for the system to have reached values close to the asymptotic values.
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Figure 9: Probabilities f(τ̄) for σ = 100 and
σ = 50 at time t = 80, 000. The underly-
ing probability distributions p(τ) are also de-
picted.

4.3 Double ring morphology

Altering the model to now include bacterial
replication, we explored the parameter space
of different diffusion rates, adsorption rates,
and bacterial replication rates (see Table 2)
and found that none of these result in a double
ring morphology (Figure 2). We additionally
added the constraint that bacteria can only
replicate if other bacteria have lysed very re-
cently (within the last 5 timesteps in this par-
ticular case) in the same deme. This assump-
tion makes sense because after a long time,
the bacteria have consumed all the nutrients
on the lawn, and only the bursting open and
release of inner contents of surrounding bac-
teria can provide them with more food, en-
abling them to grow. In that case, our findings
show curves with peaks, see Figure 10A, how-
ever, these do not correspond to a double ring
structure because here, the density does not
go down again before reaching its final value

of 200.

Figure 10: A: A representative sample of data
for the number of alive (infected or unin-
fected) bacteria as a function of position in
the moving frame if the carrying capacity of
each deme is higher than the initial bacterial
population. B: Same as A but the carrying
capacity of each deme is equal to the initial
bacterial population.

diffusion
rates

[0.01, 0.05, 0.1, 0.25]

adsorption
rates

[0.0003, 0.003, 0.03,
0.3]

bacterial
growth rates

[1, 100, 500, 1000]

Table 2: The parameters explored in the dou-
ble ring morphology experiments.
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Figure 11: A and B: The average of τ̄ of all free phages over time for p(τ) with σ = 100 (A) and
σ = 50 (B). C and D: The average of τ̄ of free phages in the moving frame over time for p(τ)
with σ = 100 (C) and σ = 50 (D). The vertical bars are the standard deviations of the data
for the average lysis time at time t. All figures include a best fit line of the form a+ eb(c−t).

5 Discussion

5.1 Competitive advantage of
stochasticity and distribu-
tion shape in lysis time

5.1.1 Gaussians

We saw that if two phage variants both have
τ ∼ N (µ, σ2), and σ was varied for one vari-
ant, then for variants with the same mean lysis
time, the variant with a higher variance had a

higher chance of outcompeting the other one.
From this we infer that the speed of spread-
ing on the bacterial lawn is faster for phages
with a higher variance in lysis time. We also
measured the speed explicitly, and confirmed
that result separately. This is already enough
to explain the results of the evolution exper-
iment: assuming that in the original popula-
tion there existed different variants of phage
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with different σ-s, and that we were selecting
for higher σ, we ended up with a phage pop-
ulation that spreads faster. From just this
experiment it might seem like higher variance
in lysis time is always good, so it raises the
question: why would there exist phages with a
low variance at all? In addition to the reasons
outlined above in the Introduction, one reason
might be that in our simulation, only phage
populations that were large compared to the
host population were considered. If the oppo-
site was true, and there were only a few phages
infecting the bacteria, then a larger variance
could also mean that there is a higher chance
of one of these few phages having a very long
lysis time. Those individuals could then have
a higher risk of ‘dying out’. This could per-
haps be tested in simulations where the focus
is not on travelling wave dynamics.

5.1.2 Different distribution shapes

Our results confirm that the shape of the dis-
tribution p(τ) beyond the mean and variance
does not play a role in fitness.

5.2 Analysis of average lysis
time over the history

Our results on the average historical lysis time
generally agree with our theory. We have
demonstrated that the average lysis time of a
population of phages is lower than the mean
of the underlying distribution of lysis times
– ⟨τ̄⟩ ≤ µ. Over time, ⟨τ̄⟩ approaches an
asymptotic value, which is lower for larger σ.
In the future, a rigorous mathematical the-
ory could be developed to more tightly bound
these asymptotic values. The results so far
are confidently within our theoretical bounds
of ⟨τ̄⟩ > 350 for σ = 50, and 200 for σ = 100.

5.3 Double ring morphology

We were unable to produce a bacterial density
curve with a clear intermediate peak (which
corresponds to a double ring morphology in

a 2D experiment) for a wide range of pa-
rameters, and different assumptions within
the model, see Table 2. It is possible that
by tweaking the parameters more, a posi-
tive result could be found. However, care
must be taken when interpreting promising
results which arise due to an arbitrary (and
thus possibly unrealistic) set of parameters.
Even if a suitable set of parameters was found,
the question of why the original population
of phages, that hadn’t yet been selected for
speed, did not exhibit the double ring mor-
phology would remain unanswered.

5.4 Further work

In general, our work contributes to the effort
to fully understand the evolutionary dynam-
ics of phage range expansions. With that in
mind, we now propose a couple of ways to di-
rectly expand on our current results.

In all of our simulations, the burst size β
stayed constant. However, there is evidence
that burst sizes depend roughly linearly on
lysis times [33], [34]. The proposed reason
for that is simply that the more time a phage
spends inside an infected host, the more time
it has to make copies of itself. This could
then mean that what phages with a longer
lysis time lose from taking longer to replicate,
they might gain by producing more copies at
once.

Additionally, we know of other properties
that phages exhibit, which we have not in-
cluded in our simulations, but which could af-
fect the spreading dynamics. For example, in
our model, we do not allow for superinfection
[27], [35]: once a phage has infected a host, it
is not possible for other phages to infect the
same host. In reality, however, some phages
do not have mechanisms to stop superinfec-
tion, and therefore allow for the possibility of
multiple different variants of phage producing
copies of themselves inside a single host at the
same time. We could also consider the possi-
bility of simultaneous infections speeding up
lysis, due to increased expression of holin pro-
teins [36]. Furthermore, we might explore the
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effect of lysis inhibition – a mechanism only
known in T4 phages and its relatives, where
lysis is delayed in the event of superinfection
[37].

Other examples of processes to include in

the model are bacterial replication, and the
possible effect of host growth rate on lysis
times [26], or cell debris from lysed bacteria
triggering phage adsorption.

6 Conclusions

We have demonstrated that stochasticity in lysis time increases the fitness of bacteriophages in
the context of spatial range expansions within bacterial colonies where viruses vastly outnumber
the hosts. More specifically, we have presented a general mathematical argument for why we
should expect a population of phages with a higher variance in lysis time to grow faster, and
shown that this holds true for our particular setup in simulations. In simulations where a
steady state wave of phages spreading in a one dimensional bacterial population was split into
two variants with σ1 and σ2, then given that µ1 = µ2, variant 1 would outcompete variant 2
if σ1 ≥ 1.2σ2. Additionally, the velocity of the waves increased with σ. Therefore, we have
confirmed the theory that in the spatial range evolution experiment where faster phages were
selected for, the variable that was under selection pressure could have been σ.

We proposed that the mechanism by which phages with a higher stochasticity in lysis time
end up having an advantage had to do with the average lysis time over the history of the
phages’ evolution. We showed that we expect ⟨τ̄⟩ at time t ̸= 0 of a population of phages to be
lower than the mean of p(τ). By thinking about the probability of even a single phage having
a particularly low τ̄ , we bounded the asymptotic value for ⟨τ̄⟩ from below. We tested this in
our simulation and found that the asymptote is well within our bound, and in fact much higher
than that, see Table 1.

We were unable to show that the bacterial density exhibits a double ring morphology within
our model.
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A Effect of larger variance on population size in a toy

model

Let there be a single virus at time t0. Let X1, ..., Xn
iid∼ N (µ, σ2), and

Tn =
n∑

i=1

Xi∼N (nµ, nσ2).

We want to know the expected value of the population size at time t given that Xi is the time
it takes between the population going from Ni−1 to Ni = βNi−1. First, the probability that
there are Nt phages at time t is given by:

P(Nt = βn, t) = P(Tn < t, Tn+1 > t)

= P(Tn < t,Xn+1 ∈ [t− tn,∞))

=

∫ t

0

fn(s)

∫ ∞

t−s

ϕ(x)dxds

(4)

where fn(s) is the probability density function of Tn, and ϕ(x) is the probability density function
of X. We can write down the expressions for the probability density functions to get

P(Nt = βn, t) =

∫ t

0

1

σ
√
2πn

e−
1
2

(s−nµ)2

nσ2

∫ ∞

t−s

1

σ
√
2π

e−
1
2

(x−µ)2

σ2 dxds (5)

The expected value of the population size in general:

E(βn) =
∑
i

βiP(βi, t) (6)

We don’t know of a way to simplify the expression for the probability, so we proceed by running
numerical simulations of this model. If we average over 100,000 runs, the expected value of the
population size at time t = 10, 000 is shown in Figure 12. We can see that as σ increases, so
does E(βn).

Figure 12: Expected size of a population that is multiplied by β after every Xi time where Xi

drawn from N (500, σ2), as a function of σ.
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B Bound for ⟨τ̄⟩
We will bound the mean of the probability distribution of average lysis times over the phages’
history by considering the probability of a single virus having a τ̄ which is smaller than some
value. We find the largest value for which that probability goes to 0 in the long time limit.

Let the initial viral population have sizeN0. If it takes time τ for each virus in the population
to replicate and release k copies of itself, then after n replications, there are at most N0k

n

viruses. The tree representing the growth of the population (see Figure 13) also has at most
N0k

n branches. If τ ∼ N (µ, σ), then a branch of length n has an average replication time
τ̄ ∼ N (µ, σ2/n) = N (µ, σ′2). Now the probability of τ̄ of a branch being mσ = m

√
nσ′ away

from the mean is at most
e−nm2/2

m
√
n
√
2π

.

This can be proven by noting that for X ∼ N (0, 1):

P(X < x) =
1√
2π

∫ x

−∞
1 · e−t2/2 dt. (7)

And since for t ≤ x < 0 we have 1 ≤ t/x,

P(X < x) ≤ 1√
2π

∫ x

−∞

t

x
e−t2/2 dt =

e−x2/2

x
√
2π

. (8)

The result follows immediately if we scale the probability distribution of X appropriately. We
also note that

e−nm2/2

m
√
n
√
2π

≤ e−nm2/2.

According to the union bound in probability theory, the probability that at least one branch
has a τ̄ that is mσ away from the mean is then

P≥1 ≤ N0k
ne−nm2/2 = N0(ke

−m2/2)n. (9)

We want ke−m2/2 < 1 so that P≥1 ≈ 0 for large n, while mσ > 0 because each lysis time is
positive, so the average also has to be positive. For k = 30, µ = 500, σ = 50, we can take
m ≥ 3 for the inequality to hold. Then, the bound for the shortest average lysis time is given
by τ̄ ≥ 500− 3× 50 = 350, which is also a bound for ⟨τ̄⟩. For σ = 100, we get that ⟨τ̄⟩ ≥ 200.

Although this argument ignores the fact that not all viruses in the population will replicate
exactly n times, we believe that the bounds are still roughly of the right size.

Figure 13: A tree representing the growing phage population. A branch from the founder to
one of its descentants is marked in bold.
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